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Asymptotic dynamics of short waves in nonlinear dispersive models

M. A. Manna and V. Merle
Physique Mathe´matique et The´orique, CNRS UMR5825, 34095 Montpellier, France

~Received 19 August 1997!

Multiple-scale perturbation theory, well known for long waves, is extended to the study of the far-field
behavior ofshort waves, commonly called ripples. It is proved that the Benjamin–Bona–Mahony–Peregrine
equation can support the propagation of short waves. This result contradicts the Benjamin hypothesis that short
waves do not propagate in this model and closes a part of the old controversy over different solutions for the
Korteweg–de Vries and Benjamin–Bona–Mahony–Peregrine equations. We have shown that, in a short-wave
analysis, a nonlinear~quadratic! Klein-Gordon–type equation replaces the ubiquitous Korteweg–de Vries
equation of the long-wave approach. Moreover, the kink solutions off4 and sine-Gordon equations are
understood as an asymptotic behavior of short waves to all orders. It is proved that the antikink solution of the
f4 model, which was never obtained perturbatively, occurs as a perturbation expansion in the wave numberk
in the short-wave limit.@S1063-651X~98!05805-X#

PACS number~s!: 03.40.Kf, 47.35.1i
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INTRODUCTION

The method of multiple scales, or reductive perturbat
method, is a powerful method that allows one to study
large number of physical phenomena, in particular wave m
tion in nonlinear dispersive systems. It is well known that t
far field dynamics of a long wave~LW! with a small ampli-
tude in a nonlinear and dispersive system can almost alw
be reduced to a small set of model equations such as Bo
inesq, Korteweg–de Vries~KdV!, modified KdV, etc.@1–4#.

The purpose of this work is to look for the far-field b
havior ofshort waves~SW! in some nonlinear and dispersiv
systems. In order to see how SW propagate, we reformu
the method of multiples scales. We will consider three s
tems. We will first study a system that comes from a hyd
dynamic, Benjamin–Bona–Mahony–Peregrine~BBMP!
equation. Then, we will consider SW in two important cla
sical relativistic field theory models: Thef4 model (f4) and
the sine-Gordon~SG! equation.

We will prove that, for BBMP~1!, SW can build up the
same soliton solution as obtained from LW@5#. This raises
the question of the unicity of the soliton description. We w
prove that the antikink~or kink! solution of thef4 model
~2!, which cannot be obtainedas a perturbative solution in
the nonlinearity parameterl, occurs as a perturbative solu
tion in the wave numberk in the SW limit. Moreover, the
kink solution of sine-Gordon equation~3! does not enter the
classical LW perturbation scheme. We will prove that it a
pears as a perturbative solution for SW.

SHORT-WAVE APPROACH

Let us consider the problem of the asymptotic dynam
of SW in nonlinear and dispersive systems. All degrees
dispersion of the system are taken into account in a Ta
expansion of the linear dispersion relationv(k) around a
large value of the wave numberk. The asymptotic dynamics
of SW for t→` is considered via the introduction of a
infinite number ofslow timevariablest1 , t3 , t5 , . . . and of
a fast spacevariable z, following the extension theory o
571063-651X/98/57~5!/6206~4!/$15.00
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Sandri @6#. The use of this fast variable and of an infini
series of slow time variables constitutes the first key of
SW approach.

The solution is expanded in the form of a power series
a small parametere proportional to the inverse of the wav
numberk. The perturbative series solution is secular. It
regularized through a renormalization of the frequency. T
results from the celebrated Stokes hypothesis on freque
amplitude dependence in water waves@7#.

The Stokes hypothesis is actually the second key too
our approach. This is explicit here while for LW asymptot
description, the KdV@8,9# or MKdV @10# hierarchies occult
the need of this tool, as they naturally provide the corr
series expansion of the frequency.

BASIC MODELS

Hence, the problem is the asymptotic behavior of a SW
the Benjamin–Bona–Mahony–Peregrine equation@11# and
in two classical relativistic nonlinear models:f4 and sine-
Gordon@12#

BBMP: ut1ux2uxxt53~u2!x , ~1!

f4: fxx2f tt5m2f2lf3, ~2!

SG: fxx2f tt5
m3

Al
sinF SAl

m DfG . ~3!

The above models have quite different intrinsic charac
istics. First SG is an integrable model, whereas BBMP a
f4 are not. Secondly the linear dispersion relationv(k) has
a finite limit ask→` ~SW limit! for BBMP, whereas it is
unbounded for SG andf4.
Indeed we have

v~BBMP!5
k

11k2
, ~4!

v~f4!5v~SG!5~m21k2!1/2. ~5!
6206 © 1998 The American Physical Society
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The phase and group velocities are all bounded in the
limit k→`. This is the crucial point in our approach, as th
very property allows the three models to sustain short wa
Then we face the problem of thenonlinear propagation of a
SW, which is the object of this work.

THE BBMP MODEL

Let us consider a SW in Eq.~1! characterized byk
5k0e21 with k0;O(1) ande!1. The plane-wave solution
of the linear problemu5exp i$kx2v(k)t% inspires a fast vari-
able z5e21x and an infinity of slow time variablest2n11
5e2n11t (n50,1,2,. . . ), by expandingv in powers ofe.

We assume the expansion

u5u01e2u21e4u41••• ~6!

and suppose theextension u2n5u2n(z,t1 ,t3 , . . . ), n
50,1, . . . , @4,6#. Then, the operators

]

]x
5

1

e

]

]z
, ~7!

]

]t
5e

]

]t1
1e3

]

]t3
1e5

]

]t5
1••• ~8!

allow us to study the behavior of ashort wavefor large time.
BBMP gives at orderse21,e,e3, . . . , theequations~writ-

ten only up toe3)

2u0,zt1
1u023u0

250, ~9!

L̂u25u0,t1
1u0,zzt3

, ~10!

L̂u45u2,t1
2u0,t3

1u2,zzt3
1u0,zzt5

13~u2
2!z , ~11!

whereL̂ is the linear operator associated with Eq.~9!:

L̂~y!52yzzt1
1yz26~yu0!z . ~12!

The unique solution of Eq.~9! in the form u0(h) with
h5k0z2v1t12v3t32v5t5 . . . , going to zero for uzu
→`, is

u05
1

2
sech2 h, v152

1

4k0
. ~13!

The valuesv3 ,v5 , . . . , which are the corrections to th
principal frequencyv1 ~Stokes’ hypothesis! are still free, but
will be determined later by the nonsecularity requiremen

Equation~10! for u2 then reads

L̂u25$4v3k0
22v1212v3k0

2sech2 h%sech2 h tanhh,
~14!

and its two first right-hand side terms are resonant~secular
producing terms! because@13#

L̂~sech2 h tanhh!50.

These secular terms are eliminated by choosing
W

s.
v35

v1

4k0
2

52
1

42k0
3

.

Hence, Eq.~14! yields the solutionu2(h)5421k0
22u0(h).

Equation~11! for u4(h) contains secular producing term
originated by the first four terms in the right-hand side. Th
can be eliminated by choosingv552423k0

25. The solution
is u4(h)5422k0

24u0(h). This procedure can be repeated
any higher ordern50,1,2, . . . and weobtain recursively

u2n~h!5
u0~h!

4nk0
2n

, v2n1152
1

4n11k0
2n11

. ~15!

Next, the perturbative series solution~6! can be summed
to give

u~h!5u0~h! (
n50

`
e2n

4nk0
2n

5
4k2

4k221
u0~h!, ~16!

and, by usingv2n11, the argumenth in the laboratory coor-
dinates yields

h5kx1
1

4k (
n50

`
t

~4k2!n
5kx1

kt

4k221
. ~17!

Therefore, this SW perturbation technique finally leads
the following solution:

u~x,t !52
2k2

124k2
sech2FkS x1

t

4k221
D G . ~18!

This very expression—solution of BBMP—was obtained
@5# as an asymptotic limit of a LW of small amplitude. Thu
for t→`, the nonlinear dynamics of a SW~with an order one
amplitude! and of a LW~with small amplitude! are indistin-
guishable in BBMP. The equation~9!

u0,zt1
5u023u0

2

is a nonlinear Klein-Gordon equation that substitutes
classical Korteweg–de Vries of the LW approach in this S
approach.

THE f4 MODEL

The topological antikink-type solution off4 will be ob-
tained by perturbation expansion starting from the cons
solutionsf056m/Al. Hence we seek a solutionf(h) such
that f→7m/Al for h→6`.

For h,0, the functionu5f2m/Al goes to zero forh
→2` and satisfies

uxx2utt522m2u23mAlu22lu3. ~19!

For unidirectional propagation, the convenient fast variablz
and the slow variablest2n11 are in this case:z5e21(x
2t), t15et,t35e3t, . . . . Expandingu according tou
5e2(u01e2u21e4u41•••), the resulting equations are~up
to e6)
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L̂u050, ~20!

L̂u2522u0,zt3
1u0,2t1

23mAlu0
2 , ~21!

L̂u45u2,2t1
22u2,zt3

22u0,zt5
12u0,t1t3

26mAlu0
2u22lu0

3 , ~22!

L̂ being the linear Klein-Gordon operator

L̂~y!52yzt1
12m2y. ~23!

For the solutionu0 of Eq. ~20! we choose the formu0
5Bexp2h with h5k0z2(4k0)21m2t11v3t31••• and B
a constant. All linear terms at the right hand side of t
equations foru2(n21) are secular. They can be eliminate
choosing appropriatelyv2n21, namely,

v2n2152
~ 1

2 !!

n! ~ 1
2 2n!!

m2n

2nk0
2n21

. ~24!

Next the solutions read

u2~n21!5BnS Al

2mD n21

exp 2nh. ~25!

With the values ofv2n21 the series forh can again be
summed as

h5kx2Ak21 m2/2t,

as well as the perturbative series foru, but only if we choose
B52(2m/Al)k0

22. It leads forf5u1m/Al to

f52
m

Al
tanh$kx2Ak21m2/2t2 lnk %. ~26!

To get this expression it is necessary to use the Fourier
resentation (x,0)

(
n50

`

~21!n11dnexp~2nx!5tanhx,

where dn are the Neumann’s numbers (d051,dn52,;n
51,2,3,. . . ).

The above solutionf is the antikink solution off4 ~with
an initial shift lnk/k), which has never been obtained prev
ously within another perturbation scheme.

The expressionAk21m2/2 can be interpreted as a nonlin
ear frequencyvnl , which defines the nonlinear group velo
ity

v5
]vnl

]k
5

k

Ak21m2/2
. ~27!

It is remarkable that the Lorentz invariance of Eq.~26! is
precisely related to that particular velocity. Indeed
e

p-

f52
m

Al
tanhH m

A2
S xv

A12v2
2

t

A12v2D 2 lnkJ . ~28!

Note that the caseh.0 in the perturbative series woul
simply yield the solutionf(2h).

THE SG MODEL

Finally in the case of the sine-Gordon model~3!, for f
5e(f01e2f21e4f41•••), with f2n functions ofh5k0z
1(2k0)21m2t11v3t31•••, where z5e21(x2t), t1
5et,t35e3t,..., weobtain ~up to ordere4)

L̂~f0!50, ~29!

L̂~f2!522f0,zt3
1f0,2t1

2
l

3!
f0

3 , ~30!

L̂~f4!522f2,zt3
1f2,2t1

22f0,zt3
12f0,t1t3

2
l

3!
3f0

2f2

1
l2

m2

f0
5

5!
, ~31!

with L̂ being the following operator

L̂~y!52yzt1
2m2y. ~32!

For the solution of Eq.~32! we choose the expressionf0
5Cexph with C a constant. As in the previous case all t
linear terms at the right-hand side of the equations
f2(n21) are secular. They can be eliminated by choos
v2(n21) as

v2n215~21!n11
~ 1

2 !!

n! ~ 1
2 2n!!

m2n

k0
2n21

. ~33!

Hence the solutionsf2(n21) read

f2~n21!52S 2l

16 D n21 C2n21exp~2n21!h

m2~n21!~2n21!
. ~34!

The series forf sums forC54m/Alk0 and yields

f5
4m

Al
(
n50

`

~21!n
exp@~2n11!~h2 ln k!#

2n11

5
4m

Al
arctan$exp~kx2Ak22m2t2 ln k!%. ~35!

In this case the Lorentz invariant form of Eq.~35! appears
as a function of the nonlinear phase velocityv
5A12m2/k2 as

f5
4m

Al
arctanH expF m

A12v2
~x2vt !2 ln kG J . ~36!
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CONCLUSION AND COMMENTS

We have applied a multiple-time version of the reduct
perturbation method to study the solitary-wave and the ki
wave solutions of some nonlinear dispersive models.
these solutions have already been known before. The a
native way given here to obtain them shows that they rep
sented ashort-wave asymptotic dynamics(t→`).

~1! BBMP for long waves serves about the same purp
as KdV, whereas their behaviors in propagating short wa
can be expected to be rather different. From a linear analy
BBMP does not propagate short waves while KdV amplifi
them @11#. Thus our result answers this old controversy
the relative relevance of KdV and BBMP@14#. Actually we
proved that short waves do propagate nonlinearly in BB
models, and build up soliton-like solutions ast→`.

~2! The antikink~or kink! solution of thef4 model, which
cannot be obtained as a perturbative solution inl @12#, ap-
pears as a perturbative solution ink in the short-wave limit.

~3! Equation~35! shows that the kink solution of SG i
obtainableonly from a short-wave dynamics, as the limitk
→0 gives rise to an imaginary argument.
-
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~4! An initial profile generically contains short-wave com
ponents that are usually neglected in favor of the long-w
components. This is the case whenever we realize nume
discretizations of the models. As we have shown, the sh
wave components asymptotically build up soliton solutio
Therefore the common understanding of a soliton as or
nating from the long wave is to be questioned.

~5! It is worth noting finally that, in the long-wave ap
proach, the nonlinear character of the solution is alrea
present at first order, and we usually find the Boussine
KdV, MKdV, etc. equations. This is not the case with th
short-wave approach whereall orders are usually necessar
to unveil the nonlinear character of the solution.
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